DANTE IN PRINT

IndeX.500

David Chadwick

This paper was prepared by David Chadwick in his role as
consultant to DANTE in the area of Directories - May 1996.

DANTE IN PRINT is a track record of papers and articles published by, or on behalf of DANTE.
HTML and Postscript versions are available from: http://www.dante.net/pubs/dip

For more information about DANTE or DANTE IN PRINT please contact:

DANTE

Francis House

112 Hills Road
Cambridge CB2 1PQ
United Kingdom

Tel: +44 1223 302 992
Fax: +44 1223 303 005
E-mail: dante@dante.org.uk

DANTE IN PRINT, No.19 Page 1

IndeX.500

David Chadwick

Introduction

This paper is a result of the talk on Whois++ given
by Alan Emtage to the NameFLOW-Paradise
meeting at ULCC in September 1995. The simi-
larities between the two services, X.500 and
Whois++, became obvious during the presenta-
tion, as did the main distinction, and advantage,
which Whois++ might at first sight appear to have
over X.500. This is the ability of Whois++ to cre-
ate centroids and pass these up to index servers,
thereby allowing a Whois++ reference hierarchy
to be built up from any attribute types, rather than
simply from the naming attributes as used in
X.500.

This paper presents a way of building up X.500
centroids and index servers, using standard X.500
(88) protocols, and so should allow the
NameFLOW-Paradise community to easily gain
experimental evidence of the advantages, if any,
of such an approach.

Whilst the X.500 protocols do not need to be
changed, either the DUAs or the DSAs will need
to be enhanced in order to be able to correctly
use the index entries. Two alternative strategies
are supported, one that requires the DUAs to be
enhanced, and one that requires the DSAs to be
enhanced.

Terminology

This paper uses the following terminology:

Index Entry - an entry which contains index-
ing information about the entries held in a par-
ticular DSA. Index entries will typically be cre-
ated by the administrator of a DSA.

Centroid DSA - a DSA which collects together
index entries from other DSAs. The collection
may be performed by actually copying index
entries from other DSAs, or by dynamically
building them using Search operations.

David Chadwick works for the IT Institute of the Uni-
versity of Salford. He produced this paper in his role as
consultant to DANTE. His e-mail address is
D.W.Chadwick@iti.salford.ac.uk

Index DSAs

A previous paper by Paul Barker [1] suggested
the creation of Index DSAs as a means of improv-
ing the performance of X.500 Searches. However,
Paul’s proposed solution required the support of
a replication protocol - either 93 shadowing [2]
or RFC1276 [3] - by the DSAs. This paper sup-
ports most of the reasons suggested by Paul for
having Index DSAs, but proposes a simpler solu-
tion that more closely mirrors that of Whois++.
The primary difference is that:

whereas Paul’s Index DSAs hold copies of en-
tries along with their searchable attributes (im-
plying that the DNs of all the indexed entries
are held in the Index DSAS);

the Centroid DSA proposed here, holds the
names of server DSAs and the lists of attribute
values that they hold. This more closely
matches the design of Whois++ centroids.

A Centroid DSA is a DSA that holds a special
type of entry, of object class index (and its sub-
classes). An index entry is initially created by a
server DSA, as an index of one or more of its at-
tributes, and is then copied by a Centroid DSA.

Information content of Index Entries

The information required from an index entry is
closely related to the information content of a
Continuation Reference. This can be summarised
as:

the name and address (Access Point) of the
DSA being referenced

the context prefix of the naming context be-
ing referenced.

Note. The information required from an index entry
in a multi-protocol directory model might be: the pro-
tocol needed to contact the directory server being ref-
erenced, and protocol specific information needed by
the referenced directory server.

In addition, an index entry needs to contain the
set of attributes that it indexes. These are the at-

Page 2

DANTE IN PRINT, No.19

tributes that will be searched as a result of user
queries.

The simplicity of this design is that all the attribute
syntaxes defined for an index entry i.e.
distinguishedNameSyntax, presentationAddress
Syntax (or printableStringSyntax ?) and those of
the attributes being indexed, already exist. The
formal definition of the index object class is given
in Appendix 1.

Naming Index entries

There are potentially many different ways of nam-
ing index entries. This is probably the most diffi-
cult decision to make, since their is no single cor-
rect answer. The name can be drawn from the
information content of the index entry, or it can
be completely unrelated to the information above.
Examples include:

use the distinguished name of the DSA that
the index points to;

use the context prefix of the DIT subtree that
is indexed,;

use an arbitrary prefix name, such as O=index,
which points to part of the local DIT where all
the indexes are held;

use an attribute which differentiates between
the types of indices.

As an aid to making the decision, it should be
remembered that index entries are held in two
different places - in the server DSA that initially
creates the index, and in a Centroid DSA that
collects the indexes.

This paper suggests the following naming mecha-
nism for index entries, and that the same naming
mechanism is used in both the server DSA and
the Centroid DSA.

In the server DSA that creates the index

1. When an index entry is created, it is held di-
rectly beneath the context prefix entry of the
naming context that it is an index to.

2. Since a naming context can have multiple in-
dexes to it, each index entry will have an RDN
that uniquely identifies it. The RDN will be
composed of the CommonName attribute only,
e.g. CommonName=Surnamelndex.

In the Centroid DSA that copies the index

1. When an index entry is copied to a Centroid
DSA, it is held in exactly the same place. This
may mean that the Centroid DSA has to cre-
ate new non-leaf nodes in its DSA Informa-
tion Tree.

(Note that by including the context prefix name in the
name of each index entry, there is no need to store the
context prefix as an attribute within the index entry.)

Of course, both the server DSA and the Centroid
DSA can be the same DSA, i.e. the server DSA
can use its own index.

Merging Index Entries

If a Centroid DSA wants to merge together the
index entries that it has collected, this is seen to
be primarily of benefit to other Centroid DSAs at
higher levels of the DIT. Merging index entries
together(as opposed to simply collecting index
entries and leaving them as is) can be done in one
of two ways: merge the index entries keeping the
original pointers to the server DSAs, or merge
them and point to the Centroid DSA that did the
merging i.e. create a hierarchy of Centroid DSAs.

The former method will add complexity to the
attribute syntaxes, and hence implementation ef-
fort. The tuples ‘searchable attributes : context
prefix : DSA access Point’” will need to be kept
together, and so merging indexes in this way will
require more complex attribute syntaxes to be
defined and implemented.

On the other hand, merging indexes and chang-
ing the reference information to point to the
Centroid DSA that did the merging will cause a
significant performance penalty during use, since
an extra link in the query chain will be needed in
order to find the actual entries that are indexed.
For this reason, merging of indexes is not recom-
mended. An example of a merged index is given
in Figure 1.

Using Index Entries

Index entries will need to be understood and rec-
ognised in order for them to be of use to the X.500
service. Either the DUAs or the DSAs (or both)
will need to be enhanced in order to be able to
correctly use the index entries. Two alternative
strategies are supported, one that requires the
DUA:s to be enhanced, and one that requires the
DSAs to be enhanced.

DANTE IN PRINT, No.19

Page 3

Strategy A - Enhance the Centroid DSAS

With this strategy, Centroid DSAs understand that
index entries are special entries. When informa-
tion is retrieved from an index entry, it is turned
into a ContinuationReference before returning it
to the requestor. (Alternatively the Centroid DSA
could act upon the continuation reference and
chain a request to the referenced DSA.)

Strategy B - Enhance the DUAS

With this strategy, DUAs understand that index
entries are special entries. When information is
retrieved from an index entry it should be treated
as a ContinuationReference, and a subsequent
request issued.

An example of index entries

Figure 1, shows (part of) the DSA Information
Trees for 3 DSAs. ABC DSA holds the O=ABC
naming context, XYZ DSA holds the O=XYZ
naming context, and GB DSA holds the C=GB
DSA. The administrators of both ABC and XYZ
DSAs have decided to create two indexes, namely,
an Organisational Units index and a Surnames
index. The former index will hold a list of the
organisational units held in the DSA, and the lat-

CN=
Org
Index

Figurel

ter will hold a list of surnames. Both of these lists
will be held in the Organisational Unit Name or
Surnames attribute respectively.

Suppose that the ABC DSA holds two organisa-
tional units (ITI and Electrical Engineering) with
organisational people of surname=Chadwick in the
ITI department, surname=Chadwick in the Elec-
trical Engineering department, and
surname=Larmouth in the ITI. The surname in-
dex entry would hold the following information:

DSA Access Point: DSA Name: C=GB, O=ABC DSA;
Presentation Address: string representation of the PSAP
of ABC DSA

Surname: Chadwick, Larmouth

CommonName: Surnamelndex

An index entry which indexes on the organisa-
tional unit name attribute would hold the follow-
ing information:

DSA Access Point: DSA Name: C=GB, O=ABC DSA,;
Presentation Address: string representation of the PSAP
of ABC DSA

Organisational Unit Name: ITI, Electrical Engineer-
ing

CommonName: OrgUnitlndex

CN=
, CN= CN=
Olrg(;J nit Surname Orgunit

Page 4

DANTE IN PRINT, No.19

Alternatively, a single ‘surname and OU’ index
could have been created holding the following
information:

DSA Access Point: DSA Name: C=GB, O=ABC DSA;
Presentation Address: string representation of the PSAP
of ABC DSA

Organisational Unit Name: ITI, Electrical Engineer-
ing

Surname: Chadwick, Larmouth

CommonName: OUSurnamelndex

The GB DSA administrator decides that he would
like to copy the indexes from the subordinate
DSAs, and this he does, creating 4 index entries,
two below the O=ABC node, and 2 below the
O=XYZ node. The GB DSA is thus able to deter-
mine the organisational units and the surnames
held in both of its subordinate DSAs. In addi-
tion, the GB DSA administrator decides to merge
the OrgUnit indexes to create a list of all of the
organisational units within GB. In this case the
DSA Access Point in the OrgUnit index will now
point to the GB DSA. The GB DSA administra-
tor also decides to create his own index of organi-
sations held in the GB DSA, and this is held in
the OrglIndex entry. The root DSA (if it exists) is
able to copy any of the 6 indexes held by the GB
DSA. Probably the most important index for the
root DSA to copy is the Orglndex from each of
the country DSAs. In this way the root DSA will
learn about all the organisations in the world.

Finally, note that it is always possible for indexes
to be copied down the DIT as well as up, so that
for example, in Figure 1, the ABC DSA could
copy the Orglndex entry from the GB DSA, thus
determining which organisations are present in
the GB DIT.

Useful Indexes

Probably the most useful index to have is a world
wide index of all organizations. Each country
DSA would be responsible for creating its own
index of organizations, and this information could
be copied by the root DSA, for it to pass to all the
other DSAs.

The next most useful indices would be at the coun-
try level, and these would be indexes of organisa-
tions and surnames (pointing to the particular org
DSAs).

Finally, local DSAs might find it useful to have
copies of some of the indexes stored elsewhere in
the DIT, and to have a superior reference to the

country DSA (so that searches of the root can be
more quickly carried out).

Creating a Centroid DSA

Step 1.
Server DSAs create their own index entries. This

can be achieved by the administrator performing
a whole subtree Search on each naming context
held by the DSA. The parameters of the Search
command are:

service control: chaining prohibited

base object: the context prefix of the naming con-
text

subset: whole subtree

filter: present = Attribute type to be indexed
search aliases false

selection: Attribute value to be indexed

The index entry is then created below the con-
text prefix entry, and the Access Point of the server
DSA is added to the entry.

Step 2A.
Server DSAs do not know about the Centroid

DSA. The Centroid DSA administrator should
Search the global DIT for entries of object class
index, starting from the root of the DIT. This
allows the Centroid DSA to create its index en-
tries. The specifics of the Search command are:

service control chaining prohibited
base object is null

subset is whole subtree

filter is object class = index

search aliases is false

selection is all

This will return a set of index entries, plus a set of
continuation references to other DSAs, which can
be followed to pick up additional index entries.

Step 2B.
Server DSAs know about the Centroid DSA. The

server DSA administrators tell the Centroid DSA
administrator about the index entries that they
hold. The Centroid DSA then either reads the
index entries (and periodically polls them for up-
dates) or enters into shadowing agreements to
replicate the index entries.

Using a Centroid DSA

By now, the reader should realise that a Centroid
DSA holds a set of index entries, and that each
index entry holds a list of attribute values held by

DANTE IN PRINT, No.19

Page 5

the referenced DSA. Index entries can be as sim-
ple or as complex as the creator requires. For ex-
ample, an index entry could simply hold a list of
the organisation names held by a DSA, or could
hold the favourite drinks, telephone numbers and
surnames of organisational people held by the
DSA. When searching a Centroid DSA, the Search
request depends upon whether the DUA under-
stands index entries or not.

If the DUA is aware of index entries, then the
following parameters are used for the Search op-
eration:

base object: set to root (for worldwide indexes),
C=AA (for country level indexes), or C=AA,
O=zZ (for organisational level indexes)
subset: full subtree

filter :set to match (a subset of) the attributes
held in the index entries, as driven by the user,
AND obiject class equals index

selection: set to dsaAccessPoint (i.e. dsaName
and presentationAddress)

The DUA will then use the returned information
to initiate requests to the referenced DSAs.

For example, one could search a Centroid DSA
for organisation names, using any standard filter
(substrings, equality or approximate matching),
and the result would be the names of the server
DSAs that hold organisation names matching the
filter. Alternatively one could search a centroid
DSA for a surname = xx and a favourite drink of
Australian Shiraz or a telephone number of 1234.
Any DSA holding that combination of attribute
values would be returned (but note that that com-
bination of attribute values are not necessarily held
in the same organisational person entry! For this
reason it might make more sense to build index
entries that index one attribute type only.

If the DUA does not understand index entries,
then a normal Search request will be issued as now,
and any returned continuation references will be
acted upon. Index entries should not be returned
(see Migration Plan).

An example of using index entries

A user who does not know that the author works
at the University of Salford, could search a
Centroid DSA, looking for surname=Chadwick.
The user would determine if the scope should be
the whole world (base object = null) or just a par-
ticular country (base object is C=nn), and the
DUA would formulate the Search of indexes. The

DUA can direct the query to its home DSA, and
this DSA will route the request in the normal way
to its superior reference (that is assuming, of
course, that the user’s home DSA does not hold
the indexes). The Centroid DSA will search
through all of its index entries, and will get a match
on the C=GB, O=University of Salford,
CN=Surnameslindex (and on any other index that
holds a Chadwick value), and will either:

if it recognises index entries (via their object
class), return a partial result containing a Con-
tinuation Reference to each DSA holding a
matched index entry;

if it does not recognise index entries, return
the DN of the index entry and the DSA access
point. Note that the index attributes are NOT
returned, as these could be huge - the DUA
did not request it.

The DUA can then either use the Continuation
References as is, or create them from the index
entries, and thereby send queries directly to the
DSAs that it knows hold Chadwick entries. Note
that this method fulfils the same design criteria as
the Whois++ design i.e. that false positives might
be returned, but false negatives will not be re-
turned. In other words, the Centroid DSA will
not omit the names of DSAs that might have the
desired information, but may return the names
of DSAs that don’t have the required informa-
tion.

Migration towards Index Entries

There are 4 alternative cases to consider as index
entries are introduced in the NameFLOW-Para-
dise directory:

neither the DUA nor the DSA understand that
index entries are special

the DUA understands that index entries are
special, but the DSA does not

the DSA understands that index entries are spe-
cial, but the DUA does not

both the DUA and DSA understand that in-
dex entries are special.

This implies that we can have Centroid DSAs that
collect together index entries, but they do not
understand that index entries are special. If a DSA
does understand index entries it will return con-
tinuation references in their place. If the DUA

Page 6

DANTE IN PRINT, No.19

understands index entries it will formulate special
Search queries to deal with them, and will create
continuation references from the responses. If
both DUA and DSA understand index entries,
the DUA will formulate special Search requests,
but will only receive continuation references. If
neither DSA nor DUA understand index entries
then the DUA could receive ‘peculiar’ results from
an index entry to a Search operation.

Points for further study

i) How much technical work is needed fora DUA
to support the searching of index entries and
the processing of the results, and how much
technical work is needed for a Centroid DSA
to support index entries?

i) How much administrative work is needed to
set up the index entries and Centroid DSAs?

Acknowledgements

The author is grateful for the many useful com-
ments that he has received, which have allowed
this paper to evolve. Particular thanks are due to
DANTE for funding this work, and to Vincent
Berkhout, Colin Robbins, Paul Barker, Mark
Wahl, Tim Howes and Chris Weider who pro-
vided valuable technical comments.

References

[1] Barker, P. “X.500 Index DSAs”. Paper presented
at NameFLOW-Paradise meeting at Salford Uni-
versity, March 1995.

[2] I1SO/IEC 9594-9 | ITU-T Rec X.525 “The Di-
rectory: Replication”, 1994

[3] Hardcastle-Kille, S. “Replication and Distributed
Operations Extensions to Provide an Internet
Directory using X.500”. RFC1276, 1991

Changes made since the first version

It was suggested that the indexing information
should be created and stored initially by the in-
dexed DSA, rather than the centroid DSA. The

benefits of this are that organizations can tightly
control the indexes that they create and export,
and can update them when appropriate. They can
also use the indexes themselves if their DSA has
been enhanced.

It was also suggested that indexes can be trans-
ferred to the centroid DSA by either shadowing
or scanning. Both of these mechanisms are sup-
ported.

Nexor suggested that a DSA should be enhanced
to understand index entries, whereas the original
paper suggested that only DUAs should be en-
hanced. Now both are catered for.

Several colleagues suggested that a DSA might
want to have more than one index for the infor-
mation that it holds, and so this has been added.
Also the original method of naming index entries
was seen to be too restrictive. This has been al-
tered.

It was also suggested that indexes of indexes
should be supported, thereby allowing a hierar-
chy of Centroid DSAs to be created. This is sup-
ported in two ways, by merging indexes into su-
per-indexes, and also by collecting indexes into
subtrees of indexes within a Centroid DSA.

Finally, it was suggested that the indexing mecha-
nism should be made more general to cater for
the case where an X.500 directory holds indexes
to information in a non-X.500 directory. Whilst
this change has not been made to the current
specification, | would envisage that it can be ac-
complished along the lines of the extended V3
X.5009 certificates (currently being profiled by the
PKIX group). The altName component allows for
alternative names such as Email addresses and Web
addresses to be used as well as distinguished
names. | envisage that the DSA name and con-
text prefix attributes of an index entry, which are
currently defined as distinguished names, could
become altNames.

DANTE IN PRINT, No.19

Page 7

ASN.1 Definitions of Index Object Classes and Attribute Types

The index object class is the superclass of all index entries.

index OBJECT-CLASS =
SUBCLASS OF {top}
MUST CONTAIN {dsaName |
presentationAddress }
MAY CONTAIN {contextPrefix }
ID cl}

The dsa name attribute is used to hold the distinguished name of the server DSA being indexed by this
index object.

dsaName ATTRIBUTE =
SUBTYPE OF distinguishedName
1D al}

Index Subclasses - an example, the organisation index
93 definition using multiple inheritance—

orglndex OBJECT-CLASS n={
SUBCLASS OF {index |
organization }
ID c2}
88 definition without multiple inheritance—
orglndex OBJECT-CLASS n={
SUBCLASS OF {index }
MUST CONTAIN organizationName}
MAY CONTAIN Organizational AttributeSet
ID c2}

Similarly, index subclasses can be created for organisational persons, application entities etc. as required.

Page 8 DANTE IN PRINT, No.19

